and their motions may be used to explain the properties of solids, liquids, and gases or the evaporation and condensation of water.

As students develop their understanding of the relationships between structure and function, they should begin to apply this knowledge when investigating phenomena that are unfamiliar to them. They recognize that often the first step in deciphering how a system works is to examine in detail what it is made of and the shapes of its parts. In building something—say, a mechanical system—they likewise apply relationships of structure and function as critical elements of successful designs.

Stability and Change

"Much of science and mathematics has to do with understanding how change occurs in nature and in social and technological systems, and much of technology has to do with creating and controlling change," according to the American Association for the Advancement of Science. "Constancy, often in the midst of change, is also the subject of intense study in science" [4].

Stability denotes a condition in which some aspects of a system are unchanging, at least at the scale of observation. Stability means that a small disturbance will fade away—that is, the system will stay in, or return to, the stable condition. Such stability can take different forms, with the simplest being a static equilibrium, such as a ladder leaning on a wall. By contrast, a system with steady inflows and outflows (i.e., constant conditions) is said to be in dynamic equilibrium. For example, a dam may be at a constant level with steady quantities of water coming in and out. Increase the inflow, and a new equilibrium level will eventually be reached if the outflow increases as well. At extreme flows, other factors may cause disequilibrium; for example, at a low-enough inflow, evaporation may cause the level of the water to continually drop. Likewise, a fluid at a constant temperature can be in a steady state with constant chemical composition even though chemical reactions that change the composition in two opposite directions are occurring within it; change the temperature and it will reach a new steady state with a different composition.

A repeating pattern of cyclic change—such as the moon orbiting Earth—can also be seen as a stable situation, even though it is clearly not static. Such a system has constant aspects, however, such as the distance from Earth to the moon, the period of its orbit, and the pattern of phases seen over time.

In designing systems for stable operation, the mechanisms of external controls and internal "feedback" loops are important design elements; feedback is

important to understanding natural systems as well. A feedback loop is any mechanism in which a condition triggers some action that causes a change in that same condition, such as the temperature of a room triggering the thermostatic control that turns the room's heater on or off. Feedback can stabilize a system (negative feedback—a thermostat in a cooling room triggers heating, but only until a particular temperature range is reached) or destabilize a system (positive feedback—a fire releases heat, which triggers the burning of more fuel, which causes the fire to continue to grow).

A system can be stable on a small time scale, but on a larger time scale it may be seen to be changing. For example, when looking at a living organism over the course of an hour or a day, it may maintain stability; over longer periods, the organism grows, ages, and eventually dies. For the development of larger systems, such as the variety of living species inhabiting Earth or the formation of a galaxy, the relevant time scales may be very long indeed; such processes occur over millions or even billions of years.

When studying a system's patterns of change over time, it is also important to examine what is unchanging. Understanding the feedback mechanisms that regulate the system's stability or that drive its instability provides insight into how the system may operate under various conditions. These mechanisms are important to evaluate when comparing different design options that address a particular problem.

Any system has a range of conditions under which it can operate in a stable fashion, as well as conditions under which it cannot function. For example, a particular living organism can survive only within a certain range of temperatures, and outside that span it will die. Thus elucidating what range of conditions can lead to a system's stable operation and what changes would destabilize it (and in what ways) is an important goal.

Note that stability is always a balance of competing effects; a small change in conditions or in a single component of the system can lead to runaway changes in the system if compensatory mechanisms are absent. Nevertheless, students typically begin with an idea of equilibrium as a static situation, and they interpret a lack of change in the system as an indication that nothing is happening. Thus they need guidance to begin to appreciate that stability can be the result of multiple opposing forces; they should be taught to identify the invisible forces—to appreciate the dynamic equilibrium—in a seemingly static situation, even one as simple as a book lying on a table.

An understanding of dynamic equilibrium is crucial to understanding the major issues in any complex system—for example, population dynamics in an ecosystem or the relationship between the level of atmospheric carbon dioxide and Earth's average temperature. Dynamic equilibrium is an equally important concept for understanding the physical forces in matter. Stable matter is a system of atoms in dynamic equilibrium.

For example, the stability of the book lying on the table depends on the fact that minute distortions of the table caused by the book's downward push on the table in turn cause changes in the positions of the table's atoms. These changes then alter the forces between those atoms, which lead to changes in the upward force on the book exerted by the table. The book continues to distort the table until the table's upward force on the book exactly balances the downward pull of gravity on the book. Place a heavy enough item on the table, however, and stability is not possible; the distortions of matter within the table continue to the macroscopic scale, and it collapses under the weight. Such seemingly simple, explicit, and visible examples of how change in some factor produces changes in the system can help to establish a mental model of dynamic equilibrium useful for thinking about more complex systems.

Understanding long-term changes—for example, the evolution of the diversity of species, the surface of Earth, or the structure of the universe—requires a sense of the requisite time scales for such changes to develop. Long time scales can be difficult for students to grasp, however. Part of their understanding should grow from an appreciation of how scientists investigate the nature of these processes—through the interplay of evidence and system modeling. Student-developed models that use comparative time scales can also be helpful; for example, if the history of Earth is scaled to 1 year (instead of the absolute measures in eons), students gain a more intuitive understanding of the relative durations of periods in the planet's evolution.

Progression

Even very young children begin to explore stability (as they build objects with blocks or climb on a wall) and change (as they note their own growth or that of a plant). The role of instruction in the early grades is to help students to develop some language for these concepts and apply it appropriately across multiple examples, so that they can ask such questions as "What could I change to make this balance better?" or "How fast did the plants grow?" One of the goals of discussion of stability and change in the elementary grades should

be the recognition that it can be as important to ask why something does not change as why it does.

Likewise, students should come to recognize that both the regularities of a pattern over time and its variability are issues for which explanations can be sought. Examining these questions in different contexts (e.g., a model ecosystem such as a terrarium, the local weather, a design for a bridge) broadens students' understanding that stability and change are related and that a good model for a system must be able to offer explanations for both.

In middle school, as student's understanding of matter progresses to the atomic scale, so too should their models and their explanations of stability and change. Furthermore, they can begin to appreciate more subtle or conditional situations and the need for feedback to maintain stability. At the high school level, students can model more complex systems and comprehend more subtle issues of stability or of sudden or gradual change over time. Students at this level should also recognize that much of science deals with constructing historical explanations of how things evolved to be the way they are today, which involves modeling rates of change and conditions under which the system is stable or changes gradually, as well as explanations of any sudden change.

INTERCONNECTIONS BETWEEN CROSSCUTTING CONCEPTS AND DISCIPLINARY CORE IDEAS

Students' understanding of these crosscutting concepts should be reinforced by repeated use of them in the context of instruction in the disciplinary core ideas presented in Chapters 5-8. In turn, the crosscutting concepts can provide a connective structure that supports students' understanding of sciences as disciplines and that facilitates students' comprehension of the phenomena under study in particular disciplines. Thus these crosscutting concepts should not be taught in isolation from the examples provided in the disciplinary context. Moreover, use of a common language for these concepts across disciplines will help students to recognize that the same concept is relevant across different contexts.

REFERENCES

- 1. American Association for the Advancement of Science. (1989). *Science for All Americans*. Project 2061. New York: Oxford University Press. Available: http://www.project2061.org/publications/sfaa/online/sfaatoc.htm [March 2011].
- 2. National Research Council. (1996). *National Science Education Standards*. National Committee for Science Education Standards and Assessment. Washington, DC: National Academy Press.
- 3. College Board. (2009). *Science College Board Standards for College Success*. Available: http://professionals.collegeboard.com/profdownload/cbscs-science-standards-2009.pdf [June 2011].
- 4. American Association for the Advancement of Science. (2009). *Benchmarks for Science Literacy*. Project 2061. Available: http://www.project2061.org/publications/bsl/online/index.php?txtRef=http%3A%2F%2Fwww%2Eproject2061%2Eorg%2Fpublications%2Fbsl%2Fdefault%2Ehtm%3FtxtRef%3D%26txtURIOld%3D%252Ftools%252Fbsl%252Fdefault%2Ehtm&txtURIOld=%2Fpublications%2Fbsl%2Fonline%2Fbolintro%2Ehtm [June 2011].