Yeast Investigation Handout

1. Make a prediction! After the yeast was activated, what do you think happened to the pH and CO₂ levels over time? Record your hypothesis here:

Time (minutes)	pН	CO ₂ (ppm)
0	7	357
1	7	426
2	7	413
3	7	486
4	7	771
5	7	1341
6	7	2163
7	7	3212
8	7	5104
9	7	8456
10	7	13138
11	6.9	18821
12	6.9	25194
13	6.9	31398
14	6.9	37432
15	6.8	42932

2. These are the data from both sensors every minute.

3. What gas does the yeast produce?

4. Create a graph of the change in pH and CO_2 concentration over time using the grid below. Label your axes, and include units. Time (in minutes) will be on the x-axis.

5. Examine your graph and the graph created by the other members of your group. Interpret the graphs.

Did the CO₂ concentration increase or decrease?

Did the pH increase or decrease?

6. What is the relationship between CO_2 and pH? Explain.

7. What do the results of your experiment mean for whether or not the relationship between CO_2 concentration and pH is a correlation or causation?